Latest standing regarding child electrophysiology throughout Latin America a LAHRS survey

From Perfect World
Jump to navigation Jump to search

Clinical development of compounds that carry a convulsion liability is typically limited by safety margins based on the most sensitive nonclinical species. To better understand differences in sensitivity to drug-induced convulsion of commonly used preclinical species, a survey was distributed amongst pharmaceutical companies through an IQ consortium (International Consortium for Innovation and Quality in Pharmaceutical Development) resulting in convulsion-related data on 80 unique compounds from 11 companies. The lowest free drug plasma concentration at which convulsions were observed and the no observed effect level for convulsions were compared between species to determine their relative sensitivity. Additionally, data were collected on other endpoints including use of electroencephalography, premonitory signs, convulsion type, the reason why development was stopped, and the highest development phase reached. The key outcomes were (1) the dog was most often determined to be the most sensitive species by both non-exposure and exposure-based analyses, (2) there was not a clear sensitivity ranking of other species (NHP, rat and mouse), (3) CNS symptoms were frequently present at exposures that were not associated with convulsions, but no single reliable premonitory indicator of convulsion was identified, and (4) the lack of convulsions in the compounds that were tested in humans in this dataset may suggest that convulsion liability is well mitigated via current drug development strategies. Diabetes mellitus (DM) is a chronic metabolic disease which causes millions of death all over the world each year, and its incidence is on increase. The most prevalent form, type 2 DM, is characterized by insulin resistance and β-cell dysfunction, whereas type 1 DM is due to insulin deficiency as a result of β-cell destruction. Various classes of synthetic drugs have been developed to regulate glucose homeostasis and combat the development of late-diabetic complications. However, several of these chemical agents are either sub-optimal in their effect and/or may have side effects. Biologically, alkaloids unveiled a wide range of therapeutic effects including anti-diabetic properties. The chemical backbones of these compounds have the potential to interact with a wide range of proteins involved in glucose homeostasis, and thus they have received increasing attention as reliable candidates for drug development. This review sets out to investigate the anti-diabetic potential of plant alkaloids (PAs), and therefore, scientific databases were comprehensively screened to highlight the biological activity of 78 PAs with a considerable anti-diabetic profile. There are not enough clinical data available for these phytochemicals to follow their fingerprint in human, but current studies generally recommending PAs as potent α-glucosidase inhibitors. Except for some classes of monoterpene alkaloids, other compounds showed similar features as well as the presently available anti-diabetic drugs such as amino sugars and other relevant drugs. Moreover, the evidence suggests that PAs have the potential to be used as alternative additives for the treatment of DM, however, further in vitro and in vivo studies are needed to validate these findings. No adequate treatment is available for painful urinary bladder disorders such as interstitial cystitis/bladder pain syndrome, and the identification of new urological therapeutic targets is an unmet need. The sigma-1 receptor (σ1-R) modulates somatic pain, but its role in painful urological disorders is unexplored. The urothelium expresses many receptors typical of primary sensory neurons (e.g. TRPV1, TRPA1 and P2X3) and high levels of σ1-R have been found in these neurons; we therefore hypothesized that σ1-R may also be expressed in the urothelium and may have functional relevance in this tissue. With western blotting and immunohistochemical methods, we detected σ1-R in the urinary bladder in wild-type (WT) but not in σ1-R-knockout (σ1-KO) mice. Interestingly, σ1-R was located in the bladder urothelium not only in mouse, but also in human bladder sections. The severity of histopathological (edema, hemorrhage and urothelial desquamation) and biochemical alterations (enhanced myeloperoxidase activity and phosphorylation of extracellular regulated kinases 1/2 [pERK1/2]) that characterize cyclophosphamide-induced cystitis was lower in σ1-KO than in WT mice. Moreover, cyclophosphamide-induced pain behaviors and referred mechanical hyperalgesia were dose-dependently reduced by σ1-R antagonists (BD-1063, NE-100 and S1RA) in WT but not in σ1-KO mice. In contrast, the analgesic effect of morphine was greater in σ1-KO than in WT mice. Together these findings suggest that σ1-R plays a functional role in the mechanisms underlying cyclophosphamide-induced cystitis, and modulates morphine analgesia against urological pain. Therefore, σ1-R may represent a new drug target for urinary bladder disorders. Berberine is a natural pentacyclic isoquinoline alkaloid that has been isolated as the principal component of many popular medicinal plants such as the genus Berberis, Coptis and Hydrastis. The multifunctional nature of berberine as a therapeutic agent is an attribute of its diverse effects on enzymes, receptors and cell signalling pathways. Through specific and general antioxidant and anti-inflammatory mechanisms, its polypharmacology has been established. Intriguingly, this is despite the poor bioavailability of berberine in animal models and hence begging the question how it induces its reputed effects in vivo. A growing evidence now suggest the role of the gut microbiota, the so-called the hidden organ, as targets for the multifunctional role of berberine. Cinchocaine concentration Evidences are herein scrutinised to show that the structural and numerical changes in the gut microbiota under pathological conditions are reversed by berberine. Examples in the pharmacokinetics field, obesity, hyperlipidaemia, diabetes, cancer, inflammatory disease conditions, etc. are used to show the link between the gut microbiota and the polypharmacology of berberine.